ЭФФЕКТЫ РАСПРОСТРАНЕНИЯ ПОДВОДНОГО НИЗКОЧАСТОТНОГО ЗВУКА ЧЕРЕЗ МАТЕРИКОВЫЙ БАРЬЕР

В.А. Щуров, С.Г. Щеглов, А.В. Буренин, Е.С. Ткаченко

Федеральное государственное бюджетное учреждение науки Тихоокеанский океанологический институт им. В. И. Ильичева Дальневосточного отделения РАН¹

Обнаружены и исследованы подводный и донный низкочастотные акустические сигналы (400 Гц) от подводного источника излучения, расположенного относительно приемной системы по другую сторону перешейка мыса Шульца. Приемная система состояла из трехкомпонентного донного геофона и приемной акустической комбинированной системы, расположенной в толще волновода на глубине 9 м. Кратчайшее расстояние между источником и приемником через материковый барьер составляет ~ 1000 м. Азимутальный угол прихода сигнала продольных волн совпадает с геометрической линией, соединяющей источник и приемник. Прием поперечной и продольной волн осуществляется по различным ортогональным осям координат геофона. Направление прихода продольной волны в точку измерения близко к горизонтальному. Наличие поперечной волны в донном грунте позволяет предположить, что дно волновода представляет собой твердую жесткую поверхность.

введение

В данной экспериментальной работе исследуется эффект прохождения подводного низкочастотного звука, излученного в волноводе мелкого моря, через материковый барьер шириной более 400 м. Сигналы, прошедшие через твердую среду, регистрировались также в условиях волновода мелкого моря. Одновременно регистрировались акустические сигналы в водной среде и колебания донного слоя. В водной среде волновода сигналы принимались комбинированной акустической системой [1]. Колебания донного слоя, вызванные прохождением сигнала, регистрировались с помощью трехкомпонентного геофона, помещенного в песчаный грунт на глубину 30 см. Геофон имеет три ортогональных пьезокерамических датчика (оси), измеряющие ускорение частиц среды, в которую он помещен.

Акустические свойства морского дна, в особенности мелкого моря, являются одной из основных проблем в современной гидроакустике. Дальность распространения в мелком море, рассеяние и поглощение звука – все эти характеристики зависят от физико-механических свойств дна. Теоретические и экспериментальные исследования, связанные с физико-механическими, геологическими свойствами донных осадков, их структурой (размеры зерен, пористость, плотность и т.д.) достаточно подробно описаны в [2, 3].

Переход акустической энергии низких частот через границу вода-дно и обратно хорошо известен в сейсмоакустике [4]. Механизм трансформации продольных волн в поперечные волны следует из принципа Гюйгенса. Согласно данному принципу фронт продольной водной волны, достигая твердого дна, является источником волн (в том числе и поперечных) в твердой среде и обратно. Область, в которой происходит трансформация волн, очевидно, должна быть сравнима с длиной волны. Экспериментально она не установлена.

Взаимодействие акустических волн, излученных в водной среде в виде фазоманипулированного сигнала и принятых лазерным деформографом на суше представлено в [5]. По разности времен прихода сигналов, после автокорреляционной свертки сигнала и его копии, оценивались состав и структура верхнего слоя земной коры, наиболее вероятные пути распространения каждого прихода сигнала. Продольная акустическая низкочастотная волна из волновода мелкого моря, проникая в область твердой среды,

¹ 690041, г. Владивосток, ул. Балтийская, 43. Тел.: +7 (423) 231-14-00. E-mail: shchurov@poi.dvo.ru

трансформируется в материковой структуре в различные типы волн. Механизм распространения акустических колебаний в твердой среде и на границе сред с различными физико-механическими параметрами различен. Поверхностные волны Релея, Стонели, Шолте и т.д., т.е. волны, распространяющиеся в придонном слое воды и слое твердой поверхности дна, могут вносить значительный вклад в звуковое поле волновода, в особенности в области низких частот. В работах [6, 7] на основе теоретического анализа данных векторно-фазовых натурных измерений в области инфразвуковых частот проведена оценка характеристик акустического поля в волноводе мелкого моря, показана доминирующая роль поверхностных волн в формировании акустического поля в волноводе со скалистым грунтом. В большинстве работ по исследованию особенностей формирования звукового поля вблизи дна мелкого моря используются в основном гидрофоны или короткие вертикальные антенны, источники звука располагаются в водной толще или на дне. Следует отметить работу, в которой исследуется проход звука от импульсного пневмоисточника через перешеек мыса Шульца [8].

Ширина перешейка в проведенном эксперименте составляла 590 м. Излучение и прием сигналов производились в водной среде, т.е. исследовались только продольные волны.

Материковый барьер, в сущности, не препятствует переносу энергии от источника к приемнику, он приводит к многократной трансформации продольных и поперечных волн, образованию поверхностных волн [4, 5]. Исследование этого явления возможно только при полном описании акустического поля [9].

В данной работе предпринята попытка исследовать векторные характеристики акустического поля в водной среде и в твердом слое донных осадков, установить непосредственную связь этих полей после прохождения звука через материковый барьер.

1. Техника эксперимента

На рис. 1 приведена схема постановки комбинированной приемной акустической системы и трехкомпонентного геофона. Комбинированная приемная система измеряет акустическое давление p(t) и три

Рис. 1. Комбинированный приемник (а); трехкомпонентный геофон (б); схема постановки приемной системы (в): 1 – плавучесть; 2 – приемный акустический модуль; 3 – груз; 4 – трехкомпонентный геофон; 5 – гермоконтейнер; 6 – груз; 7 – кабельная линия; 8 – здание лаборатории на МЭС «Мыс. Шульца». В верхней части рисунка изображены комбинированный приемник и геофон

ортогональные компоненты вектора колебательной скорости $\vec{V}(t) \{V_x, V_y, V_z\}$. Оси координат обозначались как p, x_1, y_1, z_1 . Геофон представляет собой полую металлическую сферу с находящимися внутри тремя ортогональными акселерометрами. Диаметр сферы – 20 см. Рабочий диапазон частот приемной системы 10–1000 Гц. Средняя плотность геофона равна 1,95 г/см³. Геофон был помещен в песчаный донный слой на глубину 30 см. Направление осей координат геофона: x_2, y_2 лежат в горизонтальной плоскости, ось z_2 направлена вертикально вверх.

На рис. 2 приведена карта расположения излучателей U_1 , U_2 и приемной системы П. На врезке представлена ориентация координат геофона. Излучатель расположен на акватории залива Петра Великого, приемник – в бух. Витязь. Центр излучателя расположен на расстоянии 1,5 м от дна, глубина места постановки равна 35 м. Дно ровное, песчано-галечное. Береговая черта в т. Б₁ имеет вертикальную скалистую структуру до глубины ~ 25 м, в т. Б₂ – пологий песчаный склон до т. П. Глубина места в т. П составляет 18 м. Расстояние: U_1 Б₁ = 300 м, Б₁Б₂ = 420 м, Б₂П = 280 м, общее расстояние U_1 П = 1000 м. Акустический сигнал, излучаемый из точки U_1 , может попасть в точку П двумя путями: по прямой U_1 П или дифракционным путем, огибая мыс Шульца.

На рис. 2 возможное перемещение дифракционной волны изображено пунктиром. Из геометрии рис. 2 следует, что расстояние, которое должна пройти дифракционная волна из т. И, в т. П, должно быть ~1500 м. Приемные системы, используемые в эксперименте, однозначно определят путь реального движения акустической энергии в точку измерения [1, 9]. Последующий анализ показал, что излученный акустический сигнал прошел по кратчайшему пути, т.е. по линии И,П. Расположение горизонтальных осей x_2, y_2 относительно векторов $\vec{\mathbf{M}}_1$ и $\vec{\mathbf{M}}_2$ смотрите на врезке рис. 2. Направления осей геофона и комбинированного приемника в горизонтальной плоскости определены по излучению контрольного акустического источника И,, расположенного в бух. Витязь на глубине 10 м, на расстоянии, равном 200 м от приемной системы. По излучению И, (частота 400 Гц) определялись направления ортогональных осей $x_1, y_1,$ x_2, y_2, z_3 . Ортогональные оси векторного приемника обозначены как x_1, y_1, z_1 , оси геофона – x_2, y_2, z_2 . В результате эксперимента выяснилось: ось x₁ составляет с вектором угол 45° (на рис. 2 оси комбинированного приемника не показаны); ось x₂ геофона составляет с вектором угол $\beta \sim 10^\circ$; ось y_2 перпендикулярна x_2 . Ось геофона направлена вертикально вверх. Ось x₁ составляет с осью x_2 угол ~ 35°.

Puc. 2. Схема размещения излучателей **И**₁, **И**₂ и приемной системы **П**. Расстояние между ними по прямой ~1000 м. Расстояние **ИБ**₁ = 300 м, **Б**₁**Б**₂ = 420 м, **Б**₂**П** = 280 м. **И**₂ – контрольный излучатель. Расстояние **И**₂**П** = 200 м. *α* – угол между направлениями **И**₁ и **И**₂, *β* – угол между направлением излучения **И**₄ и осью *х*₂, **Л** – помещение лаборатории

L, символы	F ₀ , Гц	2 Δ F , Гц	N, период	Т, с	∆ t, мс	$\Delta \mathbf{f}_{s}$, Гц	Е, Ватт
1023	400	200	4	10,23	10	0,0978	5,1211
127	400	20	40	12,7	100	0,0787	6,3580
63	400	10	80	12,6	200	0,0794	6,3080

Параметры излучаемых сигналов

В месте постановки приемной системы осадочные слои дна представлены песками различного гранулометрического состава: поверхностный слой песчаный, второй и третий слои состоят из гравийно-галечных отложений. Средние значение скорости продольной волны для осадочного слоя находится в пределах 1557–1810 м/с, скорость поперечных волн – 300–475 м/с [10]. Во время эксперимента скорость ветра составляла не более 1 м/с, поверхностное волнение слабое. Скорость звука у поверхности составляла величину 1520 м/с, на глубине 18 м ~1510 м/с, что характерно для бух. Витязь в это время года.

Поводом для данного исследования являются акустические эффекты, связанные с проходом фазоманипулированного сигнала через материковый барьер перешейка мыса Шульца. Источником излучения является широкополосный пьезокерамический излучатель [11]. Параметры излучаемых сигналов приведены в таблице.

L – длина М-последовательности, определяется количеством символов; F_o – несущая частота; N – количество периодов несущей частоты на символ; $T = (L*N) / F_o$ – длительность; $\Delta F = F_o / C$ – частотная полоса; $\Delta \tau = 1 / \Delta F$ – «ширина» пика автокорреляции, разрешение по времени половина от этой величины; $\Delta f_s = 1 / T$ – разрешение по частоте; $E = (1 / Fs) \sum x_i^2$ – энергия сигнала. Временные интервалы между импульсами равны 300 с.

2. Анализ экспериментальных данных

Анализ экспериментальных данных основан на измерении семи компонент поля: четырех акустических $p(t), V_{x_1}(t), V_{y_1}(t), V_{y_1}(t), V_{z_1}(t)$ – акустического давления и трех компонент акустической колебательной скорости частиц среды; трех компонент колебательного ускорения частиц осадочного слоя дна $\xi_{x_2}(t), \xi_{y_2}(t), \xi_{z_2}(t)$, из которых были получены компоненты колебательной скорости частиц среды

грунта $V_{x_2}(t), V_{y_2}(t), V_{z_2}(t)$. Набор перечисленных величин достаточен для полного описания акустического поля [9].

На рис. 3 приведены частотные спектры одной из реализаций, принятых 13.09.2019 г. Усредненный по семи импульсам спектр имеет сплошной пьедестал от 100 Гц до 500 Гц с тремя спектральными линиями на частотах 112, 212 и 400 Гц. Сплошная часть спектра мощности акустического давления $S_{p^2}(f)$ превышает акустический шум на ~5 дБ, спектральные линии превышает его на 5-10 дБ (рис. 3, а). Спектры $V_{x_1}^2(t), V_{y_1}^2(t)$ не приводятся, поскольку они аналогичны $S_{p^2}(f)$. Канал $z_1(t)$ «вышел из строя» во время эксперимента. Спектры мощности колебательной скорости частиц донной среды, зафиксированные геофоном, подобны спектру акустического давления (рис. 3, б). Максимального уровеня достигает у-компонента колебательной скорости $V_{y_2}^2$ на всех трех частотах. На частоте 400 Гц превышение $V_{\nu_2}^2 \sim 12$ дБ.

В данной работе представлены исследования сигнала в полосе частот $\Delta f = 395-405$ Гц, средняя частота 400 Гц, длина волны 3,8 м при скорости звука 1510 м/с.

На рис. 4 приведены: мощность акустического давления $p^2(t)$ и мощности трех ортогональных компонент колебательной скорости частиц донного грунта, принятые геофоном: $V_{x_2}^2(t)$, $V_{y_2}^2(t)$, $V_{z_2}^2(t)$. Временные интервалы между импульсами рав-

Временные интервалы между импульсами равны 300 с, что согласуется с таблицей. Превышение S/N для $p^2(t) \sim 10-12$ дБ, $V_{x_2}^2(t) \sim 8$ дБ, $V_{y_2}^2(t) \sim 12$ дБ, $V_{z_2}^2(t) \sim 7$ дБ. Уровни шумов для всех каналов геофона совпадают с точностью до ~1 дБ, что указывает на хорошее «сцепление» геофона с грунтом и может служить доказательством однородности песчаного донного слоя в месте установки геофона, как это подтверждается видеосъемкой дна.

Рис. 3. Спектры мощности принятых сигналов: а – акустическое давление $p^2(f)$; (комбинированный приемник): б – компоненты геофона: $V_{x_2}^2(f)$ – синяя линия, $V_{y_2}^2(f)$ – красная линия, $V_{z_2}^2(f)$ – зеленая линия. Время накопления 10 с. Усреднение проведено по семи импульсам. Уровень децибел выбран произвольно

Рис. 4. Временная реализация из семи импульсов: *а* – акустическое давление $p^2(t)$; *б* – компоненты колебательной скорости $V_{x_2}^2(t)$, $V_{y_2}^2(t)$, $V_{z_2}^2(t)$. Время усреднения 10 с. Уровень децибел выбран произвольно

На рис. 2 показана ориентация осей геофона относительно вектора $\vec{\mathbf{M}}_1$, определенная по акустическому излучению контрольного излучателя \mathbf{M}_2 на тональной частоте 400 Гц. Из рисунка следует, что ось x_2 составляет с направлением $\vec{\mathbf{M}}_1$ угол ~ 10°, следовательно, ось y_2 с направлением $\vec{\mathbf{M}}_1$ составляет угол ~ 80°.

Из рис. 4 следует, что уровень сигнала $V_{y_2}^2(t)$ превышает на 4–5 дБ по сравнению с $V_{x_2}^2(t)$. Это возможно только в случае, если по осям x_2 и y_2 регистрируются различные типы волн. Поскольку характеристика направленности каналов геофона косинусная и соз $100^\circ = 0.98$, соз $80^\circ = 0.17$, то с определенной степенью точности можно считать, что ось x_2 регистрируют только продольную волну от источника, прошедшую барьер. Ось y_2 способна регистрировать поперечную волну, возникшую в результате трансформации продольной волны. Аномальное значение уровня сигнала $V_{y_2}^2(t)$, скорее всего, скрыто в механизме трансформации продольной волны

при переходе через барьер и в свойствах донного грунта. В [4] также указывается на аномальную величину поперечной волны при ее трансформации из продольной волны. Возможно, что осадки обладают сдвиговой жидкостью, в которой могут распространяться поперечные волны [2, 3].

Отсюда следует, что акустическая энергия, пришедшая через твердую среду от источника излучения в точку нахождения геофона, представляет собой сумму энергий продольной и поперечной волн.

На рис. 5 представлены угловые характеристики продольных волн: азимутальные углы $\psi(t)$ для геофона и комбинированного приемника (рис. 5, *a*); полярного угла $\theta(t)$ для геофона (рис. 5, *б*).

Акустический комбинированный приемник устойчиво регистрирует импульсный сигнал по каналам р, x_1 и y_1 . Система координат x_10y_1 развернута относительно x_20y_2 на угол $\approx 40^\circ$. Из рис. 5, *а* следует, что направления распространения продольной волны относительно осей x_1 и x_2 в пределах точности эксперимента составляют соответственно $\sim 40^\circ$ и $\sim 10^\circ$.

Рис. 5. Угловые характеристики направленности движения энергии манипулированного сигнала в придонном слое и волноводе: *a* – азимутальный угол *ψ(t)* (красная линия – геофон, черная – комбинированный приемник); *б* – полярный угол *θ*₂(*t*) прихода донной продольной волны (геофон). Частота – 400 Гц. Усреднение – 10 с

Угол между осями x_1 и x_2 составляет ~ 35°, следовательно, направления продольных волн в волноводе и грунте в пределах точности эксперимента совпадают.

При $\theta(t) \approx 80^{\circ} - 85^{\circ}$ энергия продольной волны приходит в точку измерения под углом ~ 5°-10° к горизонту из донного слоя в акустический волновод (рис. 5, δ). Поскольку канал z_1 вышел «из строя», вычислить угол θ_1 не представляется возможным. Угол θ_2 отсчитывается от положительного направления оси z_2 , которая направлена вертикально вверх. Уровень сигнала по оси y_2 значительно превышает уровень по оси x_2 (рис. 4). Поскольку ось y_2 практически перпендикулярна к направлению излучения $\vec{\mathbf{M}}_1$ и продольной компонентой $V_{y_2}(t)$ по оси y_2 можно пренебречь, возникает предположение, что по оси y_2 зарегистрирована поперечная волна, выходящая из донного слоя.

Таким образом, в горизонтальной плоскости направленные свойства акустического поля продольных волн полностью согласованы в двух средах – жидкой и твердой. К сожалению, поскольку нет данных по каналу *z*, мы не можем определить полярный угол θ_1 в воде. Естественно, согласно закону преломления, он должен отличаться от угла θ_2 , т.е. $\theta_1 < \theta_2$ и выходящий луч должен быть ближе к вертикальной оси *z*₁.

В вертикальной плоскости x_20z_2 мы имеем две компоненты $V_{x_2}^2(t)$ и $V_{z_2}^2(t)$, возможно предположить, что это компоненты плоской волны Стонели [12], бегущей по границе вода–грунт. В этом случае вертикальная компонента должна быть больше горизонтальной, т.е. $V_{z_2}^2(t) > V_{x_2}^2(t)$. Однако $V_{x_2}^2(t) > V_{z_2}^2(t)$ на ~ 2–3 дБ (рис. 4). Кроме того, в волноводе на высоте 9 м регистрируется комбинированным приемником акустическая волна того же направления. Присутствие поверхностной волны Стонели по оси x_2 и поперечной волны по оси y_2 есть признаки того, что в этом случае поверхностный слой дна должен быть твердым и жестким.

Для выяснения структуры акустического поля в воде и донном слое использовался автокорреляционный метод. На рис. 6–9 приведены свертки зарегистрированных сигналов с их репликой (копией сигнала) [13]. Согласно таблице импульс состоит из трех посылок различной временной длительности *L*. Корреляционные характеристики первой посылки при длине М-последовательности L = 1023 с разрешающей способностью по временному сдвигу $\tau = 10$ мс представлены на рис. 6. Посылка М-последовательности при L = 1023 содержит 1023 символа, один символ содержит четыре периода несущей частоты 400 Гц. Длительность первой посылки ~ 10 с. Автокорреляция компонент $p(\tau), V_{x_1}(\tau), V_{y_1}(\tau), V_{x_2}(\tau), V_{z_2}(\tau)$

42 ПОДВОДНЫЕ ИССЛЕДОВАНИЯ И РОБОТОТЕХНИКА. 2020. № 3 (33)

при временной задержке τ до 0,2 с имеет корреляционные пики различной величины и длительности, которые соответствуют лучевым приходам сигнала, прошедшего через материковый барьер (рис. 6, *a*, *б*, *в*, *г*, е).

Акустическое давление p(t) и горизонтальные компоненты колебательной скорости $V_{x_1}(t)$, $V_{y_1}(t)$, $V_{x_2}(t)$ соответствуют продольным колебаниям в воде и грунте. Компоненты $V_{y_2}(t)$ и $V_{z_2}(t)$ могут соответствовать поперечным колебаниям грунта. Как следует из рис. 5, энергия продольной волны сигнала течет в плоскости x_20z_2 под небольшим углом к горизонту. Поскольку автокорреляционные колебания по z_2 (рис. 6, е) согласованы во времени с кривыми А, Б, Г, то характер колебаний в вертикальной плоскости обусловлен в основном продольными колебаниями, что согласуется с [4].

Автокорреляции $V_{y_2}(\tau)$ на рис. 6, ∂ при временном сдвиге от 1,4 до 1,7 с отличны от нуля только в малой окрестности $\tau = 1,6$ с. Следует отметить, что этот пик присутствует и в компонентах x_2, z_2 . Автокорреляция $V_{y_1}(\tau)$ на рис. 6, *в* одного порядка с другими каналами в воде и грунте. Отсюда следует, что на каналах *p*, x_1, y_1, x_2, z_2 регистрируются продольные волны, кото-

Рис. 6. Автокоррелограммы акустического давления и компонент колебательной скорости: a - p(t); $b - V_{x_1}(\tau)$; $e - V_{y_1}(\tau)$; $e - V_{x_2}(\tau)$; $d - V_{y_2}(\tau)$; $e - V_{z_2}(\tau)$; l = 1023, разрешающая способность по временному сдвигу т = 10 мс

рые приходят в точки измерения с согласованными задержками во времени. Отсутствие корреляции по каналу y_2 можно объяснить тем, что поперечная волна не успела прийти к данному моменту времени в точку измерения П, поскольку ее скорость значительно меньше продольной волны.

Из рис. 6, ∂ следует, что поперечная волна, распространяющаяся в грунте, имеет горизонтальную поляризацию. Необходимо учесть, поскольку угол между вектором $\vec{\mathbf{M}}_1$ и осью y_2 составляет ~85°, то незначительная часть энергии продольной волны («следы») должна быть зафиксирована на рис. 6, 7. Наглядная картина прихода отдельных рефракционных лучей представлена на сонограммах автокорреляции (рис. 7).

Приходы водных лучей (рис. 7, *a*, *б*, *в*) одновременны. Возможно разделить наиболее яркие восемь приходов за время сдвига $\tau \sim 0.2$ с. Если взять условно за среднюю скорость звука ~1600 м/с (см. табл. 3 [14]), то пути первого рефрагированного луча и последнего отличаются на ~320 м. При геометрической длине пути между точками И₁ и П, равный ~1000 м,

это составляет величины ~1/3. Лучи, приходящие на геофон, по времени прихода отличаются от водных лучей (рис. 7, г, е), в особенности по оси z₂. Время между первым и последним приходами равно ~0,34 с. Учитывая, что для этих лучей скорость звука может быть ~ 1800 м/с [10, 14], то разность длин прихода равна ~ 600 м. Простой геометрический расчет показывает, что при И, П = 1000 м (наиболее короткий путь первого луча) и 1600 м длины пути последнего луча максимально возможная глубина достигаемая последним лучом (при средней скорости 1800 м/с), может составлять ~500 м. Надо отметить, что на сонограмме $V_{y_2}(t)$ видны отдельные «следы» лучей, совпадающих по времени с $V_{x_0}(t)$, $V_{z_0}(t)$, вызванные слабым присутствием продольных волн, как это и указывалось ранее.

Автокоррелограммы двух следующих посылок L = 127, $\Delta t = 100$ мс и L = 63, $\Delta t = 200$ мс указывают на существование раздельных во времени согласованных приходов энергии по воде и грунту (рис. 8, 9).

Рис. 7. Сонограммы автокорреляции рис. 6: a - p(t); $\delta - V_{x_1}(\tau)$; $e - V_{y_1}(\tau)$; $e - V_{x_2}(\tau)$; $\partial - V_{y_2}(\tau)$; $e - V_{z_2}(\tau)$; L = 1023. Разрешающая способность по временному сдвигу равна 10 мс

СРЕДСТВА И МЕТОДЫ ПОДВОДНЫХ ИССЛЕДОВАНИЙ

Рис. 9. Автокоррелограммы акустического давления и компонент колебательной скорости: a - p(t); $b - V_{x_1}(\tau)$; $e - V_{y_1}(\tau)$; $e - V_{x_2}(\tau)$; $d - V_{y_2}(\tau)$; d

Поскольку автокорреляция компоненты $V_{y_2}(t)$ не наблюдается (рис. 6, ∂) или незначительна (рис. 8, ∂ , 9, ∂), то отсюда следует вывод, что $V_{y_2}(t)$ есть колебательная скорость поперечной волны, бегущей в донном слое, обладающим сдвиговой упругостью. Следует отметить, что уровень $V_{y_2}^2$ превышает уровни $V_{x_2}^2$ и $V_{z_2}^2$ на 3–4 дБ (рис. 4). Коррелограммы на рис. 8, ∂ , 9, ∂ наблюдаются на фоне большого «разброса» случайного процесса исходных данных, максимум которых может быть вызван незначительным вкла-

дом продольных колебаний по оси y_2 . Из рис. 6, ∂ , 7, ∂ , 8, ∂ , 9, ∂ следует, что поперечная волна и реплика не когерентны.

Разнесение во времени максимумов автокорреляционных колебаний указывает на рефракцию продольных волн в вертикальной плоскости. Задержка прихода сигнала от поперечной волны на ~5 с дает оценку ее скорости распространения ~300–400 м/с при скорости продольной волны в грунте ~1800 м/с [10, 14]. Обнаружение поперечной волны указывает на то, что придонный слой грунта обладает упругим сопротивлением сдвигу. Модель переходного слоя можно представить в виде желе, которое при малом сдвиге ведет себя как упругое твердое тело. Поскольку амплитуда продольных и поперечных смещений в акустической волне не превышает 0,01 мм [1], то такая модель полностью отвечает упругому слою вода–дно при переходе к твердому полупространству. Данная модель может быть применена и к мягкому газонасыщенному дну.

ЗАКЛЮЧЕНИЕ

Сигналы частотой 400 Гц, прошедшие в акустический волновод мелкого моря через материковый барьер шириной 420 м, зафиксированы в водной среде волновода и его донном грунте. Акустический комплекс, состоящий из комбинированной приемной системы, расположенной в толще волновода, и трехкомпонентного донного геофона, позволяет провести полное исследование в пограничных зонах вода– твердое полупространство.

Особенности наблюдаемого акустического поля:

1. В волноводе и донном грунте направления прихода энергии продольной акустической волны совпадают с геометрической линией, соединяющей источник и приемник. Автокорреляционные характеристики продольной волны в акустическом волноводе и грунте аналогичны. 2. Полярный угол продольной волны в донном грунте находится в пределах $\theta \sim 80^{\circ} - 85^{\circ}$, т.е. с горизонтом угол составляет $5^{\circ} - 10^{\circ}$.

3. Поперечная волна, зафиксированная у-компонентой трехкомпонентного геофона, имеет горизонтальную поляризацию. Временная задержка прихода поперечной волны относительно продольной составляет ~5 с. Оценка скорости поперечной волны составляет ~300 м/с.

4. Последовательность лучевых приходов есть результат рефракции в вертикальной плоскости в донном слое волновода.

5. Существование поперечной волны, зафиксированной геофоном, находящимся на глубине 30 см, указывает на то, что приповерхностный слой грунта обладает сдвиговой упругостью. При трансформации продольной волны в поперечную волну величина мощности компоненты $V_{y_2}^2(t)$ должна быть пропорциональна величине сдвиговой упругости среды.

6. На основе вышеописанных свойств донного грунта предлагается модель донного слоя на основе упругих свойств желе. При амплитуде смещений частиц среды в акустической волне ~0,01 мм структура желе полностью удовлетворяет свойствам упругого твердого тела.

Работа выполнена при частичной финансовой поддержке госзадания «Изучение фундаментальных основ возникновения, развития, трансформации и взаимодействия гидроакустических, гидрофизических и геофизических полей Мирового океана». Регистрационный номер: АААА-А20-120021990003-3.

ЛИТЕРАТУРА

1. Щуров В.А. Векторная акустика океана. Владивосток: Дальнаука, 2003. 307 с.

2. Физика океана / под. ред. А.С. Монина. М.: Наука, 1978. 456 с.

3. Акустика морских осадков / под ред. Л. Хемптона. М.: Мир, 1977. 534 с.

4. Поперечные и обменные волны при глубинных сейсмических исследованиях на акваториях // Труды ВСЕГЕИ. 2019. Т. 360. 155 с.

5. Долгих Г.И., Привалов В.Е. Лазерная физика. Фундаментальные и прикладные исследования. Владивосток: ООО Рея, 2016. 452 с.

6. Касаткин Б.А., Касаткин С.Б. Особенности распространения и интерференции нормальных волн в волноводной системе водный слой – морское дно с низкой сдвиговой упругостью // Подводные исследования и робототехника. 2018. № 1 (25). С. 46–58.

7. Касаткин Б.А., Злобина Н.В., Касаткин С.Б. Особенности пространственно-частотной структуры звуковых полей, сформированных пограничными волнами Релея– Шолте // Подводные исследования и робототехника. 2018. № 2 (26). С. 55–62.

Рутенко А.И., Мануличев Д.С. Распространение низкочастотных волн через мыс Шульца // Акуст. журн. 2014. Т. 60, № 4. С. 384–394.
Щуров В.А. Движение акустической энергии в океане. Владивосток, 2019. 204 с.

10. Самченко А.Н., Ярощук И.О. Акустические параметры рыхлых донных отложений залива Петра Великого (японское море) // Вестн. ДВО РАН. 2017. № 5. С. 130–136.

11. Моргунов Ю.Н., Безответных В.В., Войтенко Е.А., Лебедев М.С. Измерительный комплекс для исследования и мониторинга изменчивости морской среды в заливах, бухтах и морских гаванях // Подводные исследования и робототехника. 2014. № 1 (17). С. 68–72.

12. Бреховских Л.М., Лысанов Ю.П. Теоретические основы акустики океана. Л.: Гидрометиздат, 1982. 264 с.

13. Зверев В.А., Стромков А.А. Выделение сигналов из помех численными методами. Нижний Новгород: ИПФ РАН, 2001. 188 с.

14. Донченко С.Н. Акустические и физико-математические свойства и параметры донных отложений // Гидроакуст. журн. Украина. 2004. № 1. С. 59–69.